K+ Channel Regulation of Multicompartmental Signal Integration
نویسنده
چکیده
Determining how neurons integrate different streams of information is critical to understanding circuit computational functions. In this issue of Neuron, Harnett et al. (2013) show that voltage-gated K+ channels control multiple layers of dendritic integration in layer 5 pyramidal neurons.
منابع مشابه
Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملEnhancement of Noise Performance in Digital Receivers by Over Sampling the Received Signal
In wireless channel the noise has a zero mean. This channel property can be used in the enhancement of the noise performance in the digital receivers by oversampling the received signal and calculating the decision variable based on the time average of more than one sample of the received signal. The averaging process will reduce the effect of the noise in the decision variable that will approa...
متن کاملIntegration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment
Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...
متن کاملCross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity.
Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here,...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 79 شماره
صفحات -
تاریخ انتشار 2013